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Pareto distribution fits the data better than competing lognormal or ordinary double Pareto models. 
Fat tails are particularly pronounced in seed stage, early stage and generalist venture capital funds and 
suggest returns with infinite variance. The smooth double Pareto distribution has wide applicability to 
growth processes with a random initial size. 
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1. Introduction 

The purpose of this paper is to introduce the smooth double Pareto distribution, which can describe 

random growth processes with a random initial size. This distribution has Pareto tails and a central 

body that smoothly connects the tails. It can be applied to a wide range of phenomena, including 

people’s incomes and wealth, or populations and the size of human settlements.  

Many variables studied in finance, economics and other disciplines are found to be distributed 

according to a power law. Perhaps the most famous example is the frequency distribution of words in 

a natural language, studied by Zipf, who popularised the eponymous law. It states that the frequency 

of any word is inversely proportional to its rank in the frequency table. For any word W, its 

probability of exceeding length x is P( ) /W x k x   for some constant k. The special case of α ≈ 1 is 

called Zipf’s law. Earlier, Pareto (1896) had found a similar relationship in the upper-tail distribution 

of the number of people with an income or wealth W greater than a large x, where α is some positive 

real number. Research has established power laws in firm sizes, city sizes, short-term stock price 

fluctuations and trading volume (Gabaix, 2009). The tail of the distribution of the productivity of 

innovations, as well as the number of patent citations, has been found to follow a power law 

(Ghiglino, 2012). In entrepreneurship, many financial and non-financial measures can be described as 

a power law (Crawford et al., 2015). Beyond the field of economics, power laws are found in 

continuous and discrete variables as diverse as the frequency of occurrence of unique words in the 

novel Moby Dick and peak gamma-ray intensity of solar flares (Clauset et al., 2009).  

Mechanisms known to generate power laws are preferential attachment (Yule, 1925; Simon, 

1955), random growth with a reflective barrier (Champernowne, 1953; Gabaix, 1999) or death 

(Luttmer, 2007; Gabaix, 2009) to stabilise the distribution, self‐organized criticality (Bak et al., 1993), 

optimisation (Mandelbrot, 1953), random observation (Huberman and Adamic 1999; Huberman and 

Adamic, 2000), and exponential technological progress combined with exponential technology 

diffusion (Hilbert, 2013). Mitzenmacher (2003), Newman (2005) and Gabaix (2009) provide 

overviews of such generative processes. 
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Returns of private equity funds – and venture capital (VC) funds in particular – are often 

hypothesised by industry insiders to have a right power-law tail (Masters and Thiel, 2014). Power-law 

tails would be an attractive feature for entrepreneurs and investors because they can offer 

extraordinary gains from a modest investment. The continued search for “unicorns”, startup 

companies with a value of greater than $1bn, through seed and early-stage investments could be 

justified by rational investors even if historical samples provide poor average returns. If the power-

law exponent of the upper tail is sufficiently low, then higher moments converge slowly and can even 

be infinite, and history may be an imprecise guide for future returns. Prencipe (2017) finds evidence 

in support of a power-law distribution of VC investments that may have an infinite variance. In his 

sample of VC investments backed by the European Investment Fund, a power law fits the data but 

cannot be statistically distinguished from a lognormal distribution. 

A challenge for statistical tests based on a (right) tail distribution is to find a cut-off point above 

which the power law is presumed to hold. If part of the distribution cannot be explained by the power 

law to be tested, this threshold may be arbitrary. More importantly, many distributions can fit the data 

if only part of the distribution needs fitting. For example, a lognormal distribution can be stretched 

sufficiently by assuming a small mean and large variance to make it look linear in a log-log diagram 

over large intervals and thus indistinguishable from a power law. 

Returns to private equity investments are notoriously difficult to estimate because the 

underlying assets are traded infrequently or not at all. Several authors have proposed solutions to the 

problem of estimating return characteristics from investor cash flows or fund valuations. If interim 

return observations are not available, an assumption must be made regarding the path of returns 

between observations. The standard assumption in studies of private equity returns in that growth in 

value for subsequent periods is lognormally distributed (Ang et al., 2018; Korteweg and Nagel, 2016; 

Driessen et al., 2012; Cochrane, 2005). 

The objective of this paper is to model the cross-section of private equity returns in its entirety, 

taking into account the life cycle of private equity funds and potential power-law behaviour in the 

tails. By fitting the new smooth double Pareto distribution to private equity data, the assumption of 

lognormally distributed returns can be tested.  
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We derive the stationary return distribution from a standard diffusions process that is 

augmented by a lognormally distributed initial value to match the investment process of private equity 

funds. The starting point and best existing candidate for a cross-sectional distribution of private equity 

returns is the double Pareto distribution first described by Reed (2001) and extended by Gabaix 

(2009) and Gabaix et al. (2016). However, this distribution features a discontinuity at the fixed point 

at which new entities are continuously added that does not seem to agree with observed private equity 

valuations. A process by which new funds are born with a random initial valuation solves this 

problem. The result is a distribution function that is smooth everywhere. 

Results reveal a good fit of the smooth double Pareto distribution to the data. The new 

distribution accurately describes return multiples of private equity funds across the samples studied in 

this paper, both in terms of tail behaviour and goodness of fit in the distribution’s central body. It 

performs either as well as or better than alternative distributions such as the standard double Pareto 

and lognormal distribution. These findings imply that the random growth process with random initial 

size is a plausible candidate for the process generating the stationary distribution of private equity 

multiples. In particular, the commonly used hypothesis of lognormal growth finds supports in the 

data. 

This paper contributes to the theoretical literature on random growth models (Gabaix et al., 

2016, 1999; Toda and Walsh, 2015; Reed, 2003; Reed and Jorgensen, 2001) by deriving the stationary 

distribution of a random growth process with random initial size and constant death. It has wide 

applicability to random growth processes in which the initial state can be described by a lognormal 

distribution, such as personal wealth (Benhabib, 2018), the size distributions of firms (Coad, 2009; 

Luttmer, 2007; Cabral and Mata, 2003) and settlements (Rozenfeld et al., 2011). The results further 

contribute to the literature on private equity returns by establishing bounds on the likely processes 

generating the distribution of returns. We test whether innovations in the return process are normally 

distributed, leading to lognormal growth for individual entities as is often assumed in the literature 

(Ang et al., 2018; Korteweg and Nagel, 2016). 

Are private equity returns distributed according to a power-law? Probably. But this does not 

mean, however, that individual fund investments exhibit power-law behaviour. The difference is due 
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to the unequal time periods that funds spend in the growth process. Individual funds are still described 

by the lognormal growth process inherent in the diffusion model. A power law arises only because an 

unequal life time gives funds the chance to follow their lognormal path longer and thus make the 

cross-sectional distribution’s tails heavier. 

From a practical viewpoint, the model proposed in this paper completely characterises the 

return distribution rather than being restricted to its tail properties. This feature allows for a more 

comprehensive modelling of risk and return properties where sample moments can be unreliable due 

to unstable or non-existent moments. For example, the distribution’s mean, variance and higher 

moments (if they exist) can be calculated more precisely from the distribution’s estimated closed-form 

density function. 

2. Random birth and random growth 

2.1. Return observations in the private equity investment process 

Private equity fund returns are usually expressed as the internal rate of return (IRR) implicit in the 

string of cash flows between the fund and its investors, typically treating the unrealised net asset 

values as a final cash flow. A simpler measure that is often used in the private equity industry and 

which we adopt in this paper is the ratio of distributions by the fund to its investors plus the fund’s net 

asset value relative to the capital paid in by investors. The model described in this paper aims to 

account for the empirical distribution of this total-value-to-paid-in (TVPI) ratio. It can be interpreted 

as the fund’s size, normalised by the contribution made by the fund’s investors. Similar to IRR, this 

ratio exists from the first observed cash inflow to the fund and can be calculated at any point during 

the fund’s life time. 

At the start of a fund’s life, its first valuation occurs when the fund makes its first investment 

and enters some value for it on its balance sheet. In this paper, a fund’s birth is defined as the moment 

a value for its portfolio is observed. Capital is drawn down from investors when the fund makes its 

first capital call to finance this investment.1 In practice, a fund’s “vintage year” is typically defined as 

                                                   
1 Some funds may not immediately invest the capital raised from investors or may value its investment at cost, 
both of which will lead to a valuation multiple of 1. As the fund pays for its ongoing expenses, its multiple may 
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the year of the first drawdown of capital. The following investment period generally lasts for about 

three to six years, depending on the fund’s strategy. Additional capital may be called down after this 

initial period to meet any capital needs of existing portfolio companies and to pay expenses of the 

fund.  

During the investment period, additional valuations can be observed whenever the fund 

manager updates the book value of existing investments or adds new ones to the fund’s portfolio. 

Valuation events, such as disposals of portfolio companies or additional funding rounds in existing 

portfolio companies, typically lead to updates of the fund’s net asset value. In the absence of valuation 

events, the trajectory of underlying portfolio value is not observed, which often creates a time series 

of seemingly smooth or “stale” interim returns due to fund managers that hesitate to update fund 

values. 

When investments are sold by the fund, it enters its distribution phase, during which investors 

receive the proceeds from the divestments of portfolio companies as distributions from the fund. This 

phase often overlaps the investment period as new investments are still being made while the fund 

crystallises returns from older investments. Investors may thus receive both distributions and capital 

during this period. Return observations become more frequent as the fund exists its investments and 

injects additional capital into existing portfolio companies in funding rounds that are typically priced.2 

Once all investments have been exited and proceeds distributed to fund investors, the fund is 

liquidated. 

2.2. Characterising the entire distribution of returns 

In this section, we model the events in a fund’s life as a random growth process with constant death of 

entities and rebirth at a random location and derive its closed-form stationary distribution. The new 

element in this process is a (re-)birth location (i.e., initial normalised size) that is not fixed but 

distributed normally with unconstrained location and scale parameters. Because real-life growth 

                                                   
drop below 1. This initial period of stationary or decreasing multiples, also called the J-curve for the shape of 
the multiple curve over time, is not meaningful from the viewpoint of our model because no market value has 
been observed yet. 
2 Seed rounds in start-ups are often unpriced injections of convertible debt to avoid the costs associated with a 
company valuation and contracting between the parties. 
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processes may produce new entities in random rather than fixed locations, the proposed process is 

more general and may better describe observed datasets compared with existing models. While prior 

literature describes the tail behaviour of such growth processes, the goal in this section is to describe 

the entire stationary distribution of this growth process, including its central part. 

It is mathematically convenient to analyse the growth dynamics of fund value in terms of its 

logarithm, logit itx w . Suppose that fund values evolve according to a standard diffusion process 

 ,it G G itdx dt dZ     

where μG is the drift parameter and σG is the parameter scaling the standard Brownian motion Zit 

(the subscript G stands for “growth” to distinguish it from the location and scale of the birth process 

described below, and using Z for the Wiener process to distinguish it from fund value, or wealth, W). 

We are interested in the stationary distribution p(x) of this process. As we will show below, this 

stationary distribution has an exponential tail 

  ~ ax
itP x x Ce , 

where C is a constant and a > 0 is a simple function of the parameters μG and σG (Gabaix, 

2009). Equivalently, the distribution of fund value (w) has a Pareto tail, 

  ~ a
itP w w Cw . 

The observed right fat tail of the distribution of fund values can potentially be described by this 

power law. However, this distribution must be cut off at some arbitrary value (typically x = 0) and 

may be insufficient to describe an empirical distribution in which entities are born at random 

locations. 

The forward Kolmogorov equation describes the evolution of the distribution defined by the 

diffusion process over time: 

  
2

2( , ) ( , ) ( , ) ( , ) ( )
2
G

Gp x t p x t p x t p x t x
t x x


  

   
         

 (1) 
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Intuitively, the first term on the right-hand side describes the gain in density in locations with a 

locally decreasing density (i.e., the distribution is shifting in the direction of the drift parameter μ), the 

second term increases the density at locations whose neighbourhood has a higher density and vice 

versa (similarly to the heat equation in physics), the third term is a constant loss of entities across the 

distribution (e.g., firm death), and the last term creates new entities at a random location governed by 

the distribution ( )x . 

Substituting the stationary distribution p(x,t) = p(x) in eq. (1) gives 

 
2

0 ( ) ( ) ( ) ( )
2
G

G p x p x p x x
         (2) 

where ψ(x) is the distribution of new-born entities that replace those that disappear ( ( )p x ), hence 

both terms are multiplied by the constant rate of death (δ). The prime notation (e.g., ( )p x ) denotes 

first and second derivatives with respect to x.  

Equation (2) is a nonhomogeneous ordinary differential equation in p(x), whose solution 

consists of the solution to the corresponding homogeneous differential equation plus the particular 

solution for the term not involving p(x). The homogeneous equation corresponding to eq. (2) is  

 
2

0 ( ) ( ) ( )
2
G

G p x p x p x
      . (3) 

The solution to this equation can be found using the guess-and-verify approach. By guessing 

 ( ) axp x Ce   

and substituting in (3) we find (Gabaix et al., 2016, eq. 3) 

 
2 2 2 2

1 22 2

2 2
,G G G G G G

G G

a a
     

 
     

  . (4) 

The constants a1 and a2, when substituted in p(x), lead to the two equations comprising the 

steady-state solution of a random growth process in which dead entities are reborn at a constant 

location, typically x = 0.  
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1

2

, 0
( )

, 0

a x

a x

Ce x
p x

Ce x





 
 


  (5) 

The constant C is used to normalise the distribution p(x). There is only a single constant C in 

this equation because the stationary distribution must be continuous at x = 0, and its integral must be 

finite (i.e., p(x) approaches zero as x approaches positive and negative infinity). In the remainder of 

this paper, assume without loss of generality that a1 > 0 and a2 < 0.  

Equation (5) is the double Pareto distribution discussed by Gabaix (2009) and Gabaix et al. 

(2016). The cut-off point at which both branches of the function meet can be adjusted by expressing x 

relative to the cut-off point (i.e., replacing x with x − x*). If the double Pareto distribution is fitted by 

maximum likelihood, this cut-off point can be estimated alongside the parameters a1 and a2, thereby 

fitting both the left and right tail of a distribution. However, at the fixed cut-off point, which 

represents the location at which new entities are injected into the distribution, the distribution is not 

smooth and may not well describe real-life phenomena if there is randomness in the initial size. 

To find the solution of the nonhomogeneous differential equation with a random birth location 

instead of a fixed one, the variation-of-parameters approach can be used to produce a closed-form 

solution. First, rewrite eq. (2) as 

2 2 2

2 2 2( ) ( ) ( ) ( )G

G G G

p x p x p x x   
  

      

and define the function 2( ) 2 / ( )Gr x x     to simplify the right-hand side. 

The two conditions required by the variation-of-parameters approach to solve for p(x) are 

 1 2( ) ( ) ( ) ( ) ( )u x p x v x p x r x      (6) 

 1 2( ) ( ) ( ) ( ) 0u x p x v x p x   , (7) 

where u and v are unknown functions of x, and p1 and p2 are the solutions to the homogeneous 

differential equation in eq. (5). The general solution to the steady-state equation (2) is then given by 

 1 2 1 2( ) ( ) ( ) ( ) ( ) ( ) ( )p x u x p x v x p x Cp x Cp x    . (8) 
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Substituting (5) and (7) into (6) yields 

 
1 2

1 2 1 2

( ) , ( )
( ) ( )

a x a xe eu r x v r x
a a C a a C

   
 

. (9) 

These expressions must be integrated to find u and v. 

Suppose that the birth location (i.e., initial size) of entities is normally distributed with mean μB 

and standard deviation σB, and generalise the location of rebirth by substituting x − μB for x in eq. (5), 

such that 

1 1
2( ) ( )

2
1 2 1 2

2 1 1( ) exp
( ) ( ) 22

B Ba x a x
B

G BB

xe eu u dx r x dx dx
a a C a a C

  
  

               
    

  
2

2 2 1
1 12

1 2

exp / 2 ,
( ) 2

B B
B

G B

a xa erf const
a a C

 


 

  
     

 (10) 

where erf(⋅) is the error function and const1 is the constant of integration. Likewise, 

  
2

2 2 2
2 22

1 2

exp / 2 .
( ) 2

B B
B

G B

a xv v dx a erf const
a a C

 


 

         
  (11) 

We obtain the general solution by substituting these functions into eq. (8): 

 
   

 

2
2 1

1 1 1 12
1 2

2
2 2

2 2 2 22
1 2

exp ( / 2 ) exp( ( ))
( ) 2

exp ( / 2 ) exp( ( ))
( ) 2

B B
B B B

G B

B B
B B B

G B

p a xa a x erf c a x
a a

a xa a x erf c

x

a x
a a

 
  

 

 
  

 

  
        

  
     



   

  (12) 

Notice that the single constant C in the model with constant rebirth has been replaced with two 

constants, c1 and c2. These constants must be chosen appropriately for p(x) to be a well-behaved 

probability distribution. If we require that the probability of large positive or negative observations 

tends to zero, 

 lim ( ) 0,
x

p x


   

we find that 

  2 2
1 12

1 2

exp / 2
( ) B

G

c a
a a





 

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 2 2
2 22

1 2

exp / 2 ,
( ) B

G

c a
a a
 


 


 

assuming again that a1 > 0 and a2 < 0. 

The general stationary solution to the random growth process with normally distributed rebirth 

location is then given by substituting these constants into eq. (12) and simplifying: 

 

   

 

2
2 1

1 12
1 2

2
2 2

2 22
1 2

exp ( / 2 ) 1
( ) 2

exp ( / 2 ) 1 .
( ) 2

B B
B B

G B

B B
B B

G B

p a xa a x erf
a a

a xa a x erf

x

a a

   
 

   
 

   
         

   
          



 (13) 

Equation (13) is a smooth double Pareto distribution: It consists of a Pareto distribution for 

each tail with a smooth central part that connects both tails. For large values of x, the first term 

approaches 1exp( )A B x  while the second term approaches 2exp( )A B x  for some constants A, B1 and 

B2. This shows that the logarithm of private equity fund multiples has exponential tails, which 

corresponds to the VC multiple itself having Pareto tails. In the central part of the distribution, both 

Pareto distributions are mixed with weights governed by the two error functions. 

Contrary to the process with a constant rebirth location described by Gabaix (2009), this 

distribution does not require the splicing together of two separate functions at the point of rebirth. As 

expected from a (re-)birth distribution that is differentiable everywhere in combination with a 

standard diffusion process, the stationary distribution is smooth everywhere, too. One can show that 

this distribution converges to the double Pareto distribution with constant rebirth if the variation of 

this location (σB) tends towards zero and thus includes the standard double Pareto distribution 

described by Gabaix (2009) as a limiting case.  

2.3. Estimating the stationary distribution 

While equation (13) provides a closed-form solution for the stationary distribution of the growth 

process, estimation of its five parameters requires them to be uniquely identified. This is not the case 

for the parameters governing the growth component of the process: μG, σG and δ. These parameters are 

only identified up to scale.  
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To see this, consider the pre-factor in equation (13), 

2 2 2
1 2( ) 2 2G G G

a a
 

  


 
, 

which has been simplified by plugging in the expressions for a1 and a2. If we now scale the death rate 

δ and the drift parameter μG by a constant t and the diffusion parameter σG by t , these terms cancel 

in the pre-factor of the stationary distribution, 

    2 2 2 2 2 2 22 2 2 2 22 2 G G G G
G G

t t
t tt t t

  

     
 

 
. 

Similarly, the terms a1 and a2 are not affected by this scaling scheme. This scaling behaviour of 

the stationary distribution is expected because units have not been defined in the growth process. Drift 

and diffusion are typically expressed per unit time and grow linearly and as the square root of time, 

respectively, if the measurement interval is lengthened. Many combinations of the parameters μG, σG 

and δ result in the same stationary distribution. If the growth rate (and its standard deviation) is 

increased, for example, the stationary distribution is not affected if entities die at some higher rate. 

For estimation purposes, the parameters μG, σG and δ represent only two degrees of freedom. If 

we let 21 / Gt  , equation (13) can be estimated by maximum likelihood using 

 

   

 

2
2 1

1 12

2
2 2

2 22

exp ( / 2 ) 1
22 2

exp ( / 2 ) 1 ,
22 2

G

G

B B
B B

B

B B
B B

B

p a xa a x erf

a xa a x erf

x 

 



 

   
 

  
 

 

   
         

   
         



 

 (14) 

where  

2 2
1 22 , 2 .

G G G G
a a                   

Because the death rate (δ) and growth rate (μG) are only identified up to scale through the parameters

2/ G    and 2/
G G G   . 



The smooth double Pareto distribution: A model of private equity returns 
 

13 
 

3. The distribution of private equity returns 

Private equity fund returns may exhibit power law tails for a number of reasons. Explanations may be 

found in mechanisms based on the interplay of imitation and innovation in firms’ pursuit of 

productivity growth (König et al., 2017), repeated ties in networks (Kogut et al., 2007) or innovation-

driven multiplicative growth (Ghiglino, 2012). This section tests whether the stationary distribution of 

returns can be explained by a simple random walk with a lognormally distributed initial state as 

described in the previous section. 

3.1. Sample and method 

The main sample consists of all 3,332 funds from Preqin’s private equity performance database that 

were alive (i.e., not liquidated) in April 2020. Because performance information for December 2019 is 

available only for a minority of funds (N = 846), the sample also includes funds whose most recent 

performance observation is December 2018 (N = 2,486). To filter out funds that have not made their 

first investment yet, funds must have called at least 10% of the capital committed by investors. 

The variable of interest is the natural logarithm of a private equity fund’s net multiple, or total-

value-to-paid-in multiple, 

  log  = log
i it

t
i

it
t

NAV D
TVPI

C

 
 
 
 
 




 , 

where Cit is the contribution by investors to fund i in period t (i.e. capital called by the fund), Dit are 

the distributions by the fund to its investors and NAVi is the net asset value of the fund’s unrealised 

portfolio. Sums are taken over a fund’s entire history. In other contexts, this ratio can also be thought 

of as the normalised size of a firm or settlement. Because it is composed of cash distributions and net 

asset values, it contains both realised and unrealised gains. For the purposes of this paper, “valuation 

multiple”, “net multiple” and “return multiple” refer to this ratio. The average net multiple we observe 

is 1.60 (median 1.44) with a range from a minimum of 0.06 to a maximum of 89.99. In logarithmic 

terms, both the mean and median are equal to 0.36. 
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We further observe the fund’s age, stage focus and geographic region. Funds are 7.6 years old 

on average (median 7, max. 24, std. dev. 5.02). Buyout funds represent the most common stage focus 

(N = 1084), followed by venture capital (N = 828) and funds of funds (N = 626). Other types include 

growth-stage funds (N = 274) and funds focussing on secondary transactions (N = 166). Due to the 

history of both the private equity industry and Preqin, the most frequent geographic location is North 

America (N = 2065), followed by Europe (N = 769) and Asia (N = 305), the remainder of funds 

investing in other regions or across multiple regions. 

The goodness of fit of a smooth double Pareto distribution estimated through equation (14) can 

be assessed against the empirical distribution, as well as against other candidate distributions such as 

the standard double Pareto distribution and a lognormal distribution. Following the literature, we 

employ a Kolmogorov-Smirnov test for the hypothesis that the observed data could have been 

generated by the fitted distribution. In other words, this test ensures that a fitted distribution describes 

the data sufficiently well. To assess the relative goodness of fit for competing distributions, we use a 

likelihood ratio test following Clauset et al. (2009), who adopt the methodology of Vuong (1989). 

3.2. Results 

The double Pareto distribution with random birth (i.e., smooth double Pareto distribution) produces a 

good fit to the data. Figure 1 shows a histogram of the full sample alongside three fitted candidate 

distributions. As expected, the double Pareto distribution with random birth produces a smooth central 

part where the standard double Pareto distribution has difficulties fitting the data. A normal 

distribution, which corresponds to a lognormally distributed value multiple, can be excluded as a 

plausible candidate by visual inspection.  

A small spike with a region of higher-than-expected frequency can be seen around zero, 

corresponding to funds valued at a net multiple of 1. These seem to be mainly funds that have not 

realised any investments yet. If we require funds to have distributed gains from realised investments 

to enter the sample, this elevated frequency shrinks and aligns better with the fitted distribution. 
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Figure 1. Frequency distribution of net multiple (natural logarithm) 
The logarithm of the fund’s net multiple is shown as a histogram with a bin width of 0.05. The dataset for this diagram 
contains all funds that have called at least 10% of their capital. The “random birth” distribution is the smooth double Pareto 
distribution described in the previous section. 

 

Model statistics in Table 1 indicate a good fit of the smooth double Pareto distribution, which 

achieves the best fit among the three distributions tested. It fits the baseline sample significantly better 

than the standard double Pareto distribution. This better fit is also more plausible for theoretical 

reason, as there is no theoretical justification for entities to appear at a precise location (e.g., 0.372 as 

estimated in model 1). Using different proxies for whether a fund has made some investments yields 

similar results. Alternative sample inclusion criteria consistently show the best fit for the smooth 

double Pareto distribution. The condition of having returned some cash to investors is the tighter 

constraint in the sense that requiring any positive distribution markedly reduces the sample size, 

whereas adding a constraint that at least 10% of the capital has been called does not reduce the sample 

size much further. Because model fit is nearly identical, we focus our analysis on the larger sample. 

Surprisingly, the distribution is dominated by the diffusion element of the growth process, as 

well as the randomness of its birth location. The estimated growth component is negligible at −0.032. 

To understand the economic size of this estimate, recall that coefficients are identified only up to 

scale. If we assume an annual standard deviation of 20% and use 2/
G G G    from the previous  
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 section, the mean drift is 2 20.032 0.2 0.00128
GG G       per year. Similarly, the death rate 

annualised using this annual standard deviation is 2 26.571 0.2 0.26284
GG G      . When funds 

are born, they appear around a logarithmic multiple of 0.362 with a standard deviation of 0.129. These 

Table 1. Parameter estimates for random-birth distribution and double Pareto distribution 
This table shows fit statistics and parameter estimates for the stationary distribution of a random growth process with a fixed 
rebirth location (double Pareto, DP) and with a random birth location (RB, or smooth double Pareto). Fit statistics are also 
provided for a lognormal distribution. P-values are shown for Kolmogorov-Smirnov tests of the null hypothesis that the 
observed sample is generated by the candidate distribution. Likelihood ratio tests show results for the hypothesis that the first 
distribution mentioned does not fit better than the second one mentioned. Comparisons of smooth double Pareto distributions 
against lognormal distributions (LN) yield the same qualitative results as comparison of standard double Pareto distributions 
against lognormal distributions and are thus not shown. Drift and death rate in Panel A are only determined up to scale. The 
death rate reported at the bottom of the table is the maximum-likelihood estimate of the proportion of funds leaving the 
sample each year. Model 1 includes all funds with capital called greater than 10% of their committed capital, model 2 
requires funds to have distributed some cash to investors, and model 3 combines both criteria. Standard errors are shown in 
parentheses. Standard errors for tail exponents in Panel A are computed using the Delta method. Significance levels: *** p < 
0.01, ** p < 0.05, * p < 0.1. 
 (1) 

Baseline sample 
(called capital ≥ 10%) 

(2) 
Realised > 0 

(3) 
Realised > 0  

& called capital ≥ 10% 
 Coef. S.E.  Coef. S.E.  Coef. S.E.  
Panel A: Random birth location 
Drift (

G
 ) -0.032 (0.083)  -0.074 (0.077) -0.070 (0.076)  

Death rate (  ) 6.571 (0.326) *** 6.227 (0.280) *** 6.223 (0.279) *** 

Birth mean ( B ) 0.362 (0.011) *** 0.415 (0.010) *** 0.415 (0.010) *** 

Birth Std. Dev. ( B ) 0.129 (0.014) *** 0.072 (0.017) *** 0.070 (0.017) *** 
Right tail exp. (a1) 3.657 (0.120) *** 3.604 (0.113) *** 3.599 (0.113) *** 
Left tail exp. (a2) -3.593 (0.125) *** -3.456 (0.108) *** -3.459 (0.107) *** 
Observations 3332   2848   2836   
Log-Likelihood -1612.65   -1307.09   -1299.34   
        

Panel B: Double Pareto         
Right tail exp. (a1) 3.418 (0.086) *** 3.556 (0.095) *** 3.552 (0.095) *** 
Left tail exp. (a2) -3.252 (0.080) *** -3.312 (0.086) *** -3.322 (0.086) *** 
Birth location (x*) 0.372 (0.008) *** 0.424 (0.008) *** 0.424 (0.007) *** 
Log-Likelihood -1630.19   -1311.68  -1303.63   
       

Panel C: Fit tests       
P-value KS-test RB 0.0907   0.2111  0.2084   
P-value KS-test DP 0.0382   0.1256  0.1281   
P-value KS-test LN < 0.0001   < 0.0001  < 0.001   
P-value RB vs DP 0.0046   0.1044  0.1153   
P-value DP vs LN < 0.0001   < 0.0001  < 0.0001   
       

Death rate / year 0.1308   0.1163  0.1158   
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results show that funds achieve exceptionally high (and exceptionally low) multiples through the 

diffusion component of the growth process, not by drifting to the upper (or lower) tail. 

If the rate at which entities die per time period is known, this parameter can be used to 

constrain the remaining parameters in the full density function (12). Because the age of private equity 

funds is available from Preqin, its distribution can be used to estimate the death rate. If we use a rate 

of 13.08% per year, as shown in Table 1, it is possible deduce the mean growth rate and diffusion rate 

of the underlying process. From the previous section, we use 2/ G    and 2/
G G G   , which 

gives 2 / 0.1308 / 6.571 0.0199G      and thus 0.1411G  . This result can also be obtained 

from estimating equation (12) directly while constraining the death rate to 0.1308. The advantage of 

estimating the 5-parameter equation is that standard errors are available from the estimation procedure 

and do not need to be calculated ex-post (e.g., via the delta method). 

Tail exponents for the entire private equity asset class are in the range 3.2−3.6. The standard 

double Pareto produces a right-tail exponent of 3.4 and a left-tail exponent of 3.2. These values are 

similar to those obtained from a smooth double Pareto distribution. Inserting the parameter estimates 

from Model 1 in Table 1 into equation (4), we have 

2 2
1 22 , 2

G G G G
a a                   

2 2
1 2 63. 36570.032 0.032 2 6.571 , 0.032 0.032 2 .571 3.5933a a           . 

The similarity to the standard double Pareto case is expected because both tails are ultimately 

dominated by the double-Pareto component of the distribution. The random-birth component in the 

central part of the distribution is lognormal and rapidly decreases in the tails. This similarity in the 

tails can also be seen in Figure 2, which shows both tails of the full sample of private equity valuation 

multiples. In the left tail, the graph again shows a region just below zero with fewer than the expected 

number of observations. 

Extreme observations in both tails are found some distance from their estimated location, while 

the central body of the distribution fits almost perfectly as shown Figure 1 and Figure 2. This can be 

an indication that observations are not generated by the same underlying process but come from 
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separate distributions. Inspection of individual observations in the tails reveals that most extreme 

observations are venture capital funds. All funds with a log multiple greater than 2 are venture capital 

or growth-stage funds. 

 

  
Figure 2. Tail distribution of net multiple for full (baseline) sample 
This figure shows log-log plots of the logarithm of the cumulative distribution (left) and complementary cumulative 
distribution (right) as a function of the logarithm of the fund’s (log) net multiple. 

 

3.2.1. Distribution by fund strategy 

The accuracy of fitted distributions can be improved by separately fitting subsamples for different 

fund strategies. The business model of venture capital funds, which typically invest in seed-stage, 

early-stage and pre-IPO companies, can be expected to generate returns with greater variability than 

buyout funds, growth funds or funds of funds. Returns of a fund of funds, however, may converge to 

venture returns in the tails if venture funds are part of its portfolio due to the fact that the heavier tails 

of venture capital returns will eventually dominate other portfolio investments in both tails. 

Tail plots for venture capital multiples in Figure 3 show a better fit if venture capital multiples 

are analysed separately. Multiples of non-VC funds produce a better fit, too, if analysed separately as 

shown in Figure 4. This finding supports the view of the main sample as a mixture of at least two 

separate growth processes. 

Differences in tail exponents for venture capital funds compared to non-VC funds are much 

smaller. As shown in Figures 3 and 4, the fitted line is much steeper in the tails for VC funds. The 

exact results are shown in Table 2. Tail exponents in VC funds are 2.2 and 2.5 in the right and left tail, 
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respectively (2.3 and 2.6 for the fitted smooth double Pareto distribution). The distribution of non-VC 

funds, by contrast, has tail exponents between 3.8 and 4.0 (double Pareto) or 4.7 and 4.8 (smooth 

double Pareto).  

 

  
Figure 3. Tail distribution of net multiple for venture capital funds 
This figure shows log-log plots of the logarithm of the cumulative distribution (left) and complementary cumulative 
distribution (right) as a function of the logarithm of the fund’s (log) net multiple. The sample contains only venture capital 
funds. 

 

  
Figure 4. Tail distribution of net multiple for non-VC funds 
This figure shows log-log plots of the logarithm of the cumulative distribution (left) and complementary cumulative 
distribution (right) as a function of the logarithm of the fund’s (log) net multiple. The sample consists of all funds in the full 
sample that are not venture capital funds. 

 

These differences in tail behaviour between VC and non-VC funds can have important 

implications for entrepreneurs’ and investors’ decision making. The variance of a power-law 

distribution is infinite for an exponent of α < 3 in the right tail. Similarly, the third moment is infinite 

for α < 4. In general, any moment k of a power law exists only if k < α – 1. This implies that the mean, 
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variance, skewness and possibly kurtosis are finite for non-VC funds. But skewness and kurtosis and 

most likely – and most importantly – the variance of VC returns are infinite. Tail exponents for 

venture capital are not much bigger than 2 in absolute value as shown in Table 2, indicating value 

multiples with infinite variance. In addition, the right tail in particular has a third moment that may be 

unstable and slow to converge to its population value (if it exists) in any finite sample.  

This feature of infinite variance and unstable skewness may attract founders and investors who 

see potentially infinite gains as a chance to find a unicorn in the distribution. Mathematically, the 

same applies to the left tail of the distribution, which in theory may balance the right tail if the 

likelihood of large gains is equal to the likelihood for near-total losses. However, this cancellation of 

large gains and losses may only be a concern if all wealth is concentrated in the portfolio, which may 

be nearly wiped out after having found a unicorn or, conversely, make an extraordinary gain after 

having nearly lost all value. If additional wealth is available outside the portfolio (e.g., through a 

separate portfolio, via family or friends, or through an entrepreneur’s human capital), then 

entrepreneurs or investors may be able to replenish their portfolio using this external wealth to enable 

a new bet. From an entrepreneur’s viewpoint, for example, frequently the main investment is their 

time to work for the start-up, which can be redeployed into a new project should the start-up not turn 

into a unicorn.  

Owning an option on an underlying asset with a potentially infinite volatility is more valuable 

than one with a finite volatility. It is important to keep in mind, however, that any value will only be 

realised after a long waiting time, since the valuations are still governed by the diffusion process 

outlined above. In other words, if a VC fund is observed for a fixed length of time, its distribution will 

be lognormal and its return variance will be finite. This seeming contradiction between power laws in 

the cross-section and a benign lognormal distribution in the time series sense may be at the heart of 

the debate whether it is worthwhile investing in venture capital. A conclusion from our findings may 

be that unicorns can be found but only if entrepreneurs or investors are willing to wait a long time. 
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Table 2. Venture capital vs buyout funds 
This table shows fit statistics and parameter estimates for the stationary distribution of a random growth process with 
fixed rebirth location (double Pareto) and with random birth location (smooth double Pareto). The main sample is split by 
fund strategy: all venture capital funds in model 1, non-VC funds in model 2 and buyout funds in model 3. P-values are 
shown for Kolmogorov-Smirnov tests of the null hypothesis that the observed sample is generated by the candidate 
distribution. Likelihood ratio tests show results for the hypothesis that the first distribution mentioned does not fit better 
than the second one mentioned. Comparisons of smooth double Pareto distributions against lognormal distributions (LN) 
yield the same qualitative results as comparison of double Pareto distributions against lognormal distributions and are 
thus not shown. The death rate reported at the bottom of the table is the maximum-likelihood estimate of the proportion 
of funds leaving the sample each year. Standard errors are shown in parentheses. Standard errors for tail exponents in 
Panel A are computed using the Delta method. Significance levels: *** p < 0.01, ** p < 0.05, * p < 0.1. 
 (1) 

VC 
(2) 

Non-VC 
(3) 

Buyout 
 Coef. S.E.  Coef. S.E.  Coef. S.E.  
Panel A: Random birth location 
Drift (

G
 ) 0.158 (0.105)  -0.042 (0.153) -0.496 (0.338)  

Death rate (  ) 3.007 (0.252) *** 11.306 (0.840) *** 11.898 (1.741) *** 

Birth mean ( B ) 0.255 (0.028) *** 0.378 (0.013) *** 0.420 (0.026) *** 

Birth Std. Dev. ( B ) 0.135 (0.034) *** 0.165 (0.013) *** 0.241 (0.019) *** 
Right tail exp. (a1) 2.300 (0.130) *** 4.797 (0.238) *** 5.400 (0.618) *** 
Left tail exp. (a2) -2.615 (0.163) *** -4.714 (0.230) *** -4.407 (0.350) *** 
Observations 828   2504   1084   
Log-Likelihood -696.55   -790.57   -475.13   
        

Panel B: Double Pareto         
Right tail exp. (a1) 2.216 (0.096) *** 4.036 (0.121) *** 3.685 (0.153) *** 
Left tail exp. (a2) -2.474 (0.112) *** -3.794 (0.110) *** -3.146 (0.122) *** 
Birth location (x*) 0.260 (0.011) *** 0.390 (0.008) *** 0.425 (0.009) *** 
Log-Likelihood -698.78   -824.64  -510.71   
        

Panel C: Fit tests       
P-value KS-test RB 0.4430   0.7135  0.6186   
P-value KS-test DP 0.4260   0.0045  0.0028   
P-value KS-test LN < 0.0001   0.0003  0.1650   
P-value RB vs DP 0.2703   < 0.0001  < 0.0001   
P-value DP vs LN < 0.0001   0.0058  0.3947   
       

Death rate / year 0.1216   0.1342  0.1351   
 

There is some evidence that VC funds rely more on continuous growth than buyout funds. 

While the drift rate is insignificant in both cases, its difference between model 1 and model 3 in Table 

2 is significant at p < 0.1. In line with these fund types’ business models, this finding suggests that 
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most systematic value creation in buyout funds occurs when investments are made, whereas VC funds 

add value continuously throughout the fund’s life. 

The smooth double Pareto distribution is the only one that fits all three subsamples of private 

equity strategies in Table 2. In Kolmogorov-Smirnov goodness-of-fit tests, the distribution with 

random birth also performs significantly better than the double Pareto distribution with fixed birth 

location in the non-VC and buyout samples. These findings show that a random growth process with 

random birth size can accurately describe valuation multiples in the private equity asset class. 

3.2.2. Fund strategy as a covariate 

The previous section compares fitted smooth double Pareto distributions across subsamples of the 

baseline sample by fund strategy. These separate models can be combined into a single model for the 

full sample by describing the four identified parameters in equation (14) as linear functions of fund 

strategies and estimating the parameters by maximum likelihood as before. As a further benefit of this 

approach, additional covariates can be added to the linear part of the model. 

This leads to four equations, 

2 3 4, , ,
G B B       1Xγ Xγ Xγ Xγ , 

where X is a matrix of covariates including a constant and γ1..4 are the vectors of hyperparameters 

analogous to the parameters estimated for subsamples in Table 2. Subscripts indicating individual 

funds have been omitted. In our case, the matrix of covariates includes dummy variables for fund 

strategy (Late stage / growth, Buyout, Fund of funds, Other; Seed/early stage as the omitted baseline 

category) and a dummy variable indicating whether a fund is located outside of North America. 

Covariates need not be the same for each of the parameters.  

If the possibility that the standard deviation σB may become zero or negative during the 

numerical optimisation is a concern, σB in equation (14) may be reparametrized to avoid this scenario. 

This may be useful if it is suspected that the distribution is not smooth around the birth location but 

follows a standard double Pareto shape without variation in birth location (i.e. σB = 0).  
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Table 3. Fund strategies as covariates 
This table shows models fitting valuation multiples for the baseline sample. Model 1 treats all four identified parameters 
of the smooth double Pareto distribution as a function of fund strategy (VC (general), Late stage / growth, buyout, fund of 
funds, other) and fund location. The omitted baseline fund stage category is Seed/early stage. Model 2 keeps birth 
location and birth standard deviation fixed and models the two parameters that determine the tails as functions of fund 
strategy and location. Model 3 is the baseline model from Table 1 for comparison. N=3,332. Standard errors are shown in 
parentheses. Significance levels: *** p < 0.01, ** p < 0.05, * p < 0.1. 
 (1) 

Fully 
parameterised 

(2) 
Tail parameters 

only 

(3) 
Intercepts 

only 
 Coef. S.E.  Coef. S.E.  Coef. S.E.  

Equation for Drift (
G

 ) 

Intercept 0.119 (0.174)  -0.063 (0.103) -0.032 (0.083)  

VC (general) -0.387 (0.243)  -0.242 (0.134) *   

Late stage / growth 0.334 (0.365)  -0.204 (0.164)    

Buyout -1.028 (0.410) ** 0.124 (0.144)    

Fund of funds -1.367 (0.454) *** 0.489 (0.351)    

Other -0.234 (0.360)  0.032 (0.331)    

Not North America 0.613 (0.1679 *** 0.074 (0.100)    

Equation for Death rate (  ) 
Intercept 2.876 (0.399) *** 2.599 (0.333) *** 6.571 (0.326) *** 
VC (general) 0.863 (0.584)  0.962 (0.461) **   
Late stage / growth 4.150 (1.129) *** 3.127 (0.713) ***   
Buyout 10.186 (1.958) *** 5.650 (0.716) ***   
Fund of funds 18.842 (3.135) *** 23.346 (3.524) ***   
Other 10.091 (1.805) *** 16.655 (2.842) ***   
Not North America -0.576 (0.472)  -0.436 (0.396)    

Equation for Birth mean ( B ) 
Intercept 0.232 (0.047) *** 0.366 (0.012) *** 0.362 (0.011) *** 

VC (general) 0.094 (0.064)      

Late stage / growth 0.010 (0.061)      

Buyout 0.230 (0.053) ***     

Fund of funds 0.235 (0.050) ***     

Other 0.151 (0.051) ***     

Not North America -0.081 (0.016) ***     

Equation for Birth standard deviation ( B ) 
Intercept 0.140 (0.043) *** 0.164 (0.011) *** 0.129 (0.014) *** 

VC (general) 0.049 (0.071)      
Late stage / growth 0.060 (0.056)     
Buyout 0.117 (0.046) **    
Fund of funds -0.005 (0.046)     
Other -0.063 (0.055)     
Not North America -0.025 (0.017)     
       
Log-Likelihood -1365.99   -1420.63  -1612.65   
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Results in Table 3 show that the drift rate standardised by the standard deviation of the growth 

process (
G

 ) is large of earlier stages in the portfolio companies’ life cycle. Buyout funds and funds 

of funds have negative growth rates, while growth rates for venture capital funds are indistinguishable 

from zero. Interestingly, North American funds grow faster than funds located elsewhere. Funds that 

invest in later stages also start their life with a higher valuation multiple, which suggests that a large 

proportion of any value creation in funds of funds and buyout funds occurs at the start of their life 

(i.e., when they initially invest), while venture capital funds create value more continuously. 

As expected from results in Table 2, funds that invest in later stages exhibit more stable tail 

behaviour as indicated by the standardised death rate (  ). The smallest tail exponents are found in 

seed and early-stage funds with a left tail exponent of −2.52 ( 2 2
G G       = 

20.119 0.119 2 2.876    = 2.52 ) and a right tail exponent of 2.283. Valuation multiples of funds 

of funds have the lightest tail with exponents of −5.46 on the left and 7.96 on the right. The left tail 

exponent for generalist VC funds is almost identical at −2.48, while the right tail exponent of 3.02 is 

just at the boundary between a defined and undefined variance of the underlying valuation multiple. 

This result shows that usual OLS estimates of VC returns based on means and variances may not lead 

to econometrically stable results if returns of seed and early-stage funds in particular are sensitive to 

extreme observations in the tails. Estimation within a single model allows easy comparison of 

coefficients and shows that standardised death rates significantly drive the tail exponents across fund 

strategies. Intuitively, the large variation of growth rates in venture capital funds dominates their 

death rate and causes fat-tailed valuation multiples (via a small  ), while for other funds a relatively 

higher standardised death rate keeps valuation multiples closer to their birth value. 

3.2.3. Shifted observations in the left tail? 

One feature in particular stands out in the left tail of the distribution of logarithmic valuation 

multiples: Observations seem to be missing in a small region to the left of zero. This can be seen as 

the gap between the estimated density and the histogram in Figure 1. This density drop in the left tail 
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is more pronounced in the VC sample shown in Figure 4 than in the full sample. At the same time, 

there is a surplus in a small region around a value multiple of zero. 

Missing observations in one region and a surplus in another can be explained by funds 

deliberately shifting their valuations slightly to appear more profitable in a region that matters to 

investors (e.g., break-even). However, a simpler explanation involves funds not having acknowledged 

any return on investment on their balance sheet yet. These funds may not have made an investment 

yet or have booked their investments at cost due to the uncertain nature of VC investments. The s-

shaped empirical distribution around zero, shown for venture capital funds in Figure 5, is much less 

pronounced for other types of funds. 

 

  
Figure 5. Distribution of all VC funds vs VC funds with distributions 
The left-hand graph shows the empirical distribution and a fitted smooth double Pareto distribution for the full sample, 
corresponding to Figure 1. The right-hand graph shows the same sample after removing funds that have not made any 
distributions to investors. 

 

When testing whether the spike near zero can be explained by funds without investments, 

another proxy for investment activity can offer some insights. The right-hand graph in Figure 5 shows 

the distribution of value multiples for VC funds with the added constraint that funds must have made 

a positive distribution to their investors. Under the assumption that funds do not distribute cash to 

investors without having first realised an investment, this sample constraint accurately captures 

valuation activity that has an effect on funds’ value multiples.  

A disadvantage of using investor distributions as a proxy is its failure to capture funds that have 

not exited any investments yet. Moreover, it cannot identify funds that have successfully exited 
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portfolio companies but chose not wait before distributing anything to investors. Defining a fund’s 

birth through this proxy thus fails to capture economically meaningful activity of importance to 

investors. Similar to the usual definition of the vintage year as the year of the first drawdown, the 

birth of a fund should coincide with the first purchase or generation of assets capable of exhibiting 

returns over time.  

However, if it was possible to accurately identify the first investment of a fund and to define the 

fund’s birth in this way, this may create a sample of funds in which some funds do not update their 

valuations despite having made an investment, causing a spike in the distribution of (log) value 

multiples around zero. There is a trade-off between capturing all meaningful economic activity and 

observing a distribution that does not include “stale” multiples of funds that have made investments 

but chose to keep them at cost. An alternative would be to formally incorporate the mechanism 

whereby funds remain at zero and then jump to the first meaningful valuation as a jump process. 

4. Conclusion 

Findings in this paper show that the stationary distribution of a random growth process with random 

initial value fits the empirical distribution of private equity valuation multiples. This new distribution 

– a smooth double Pareto distribution – features a smooth central part that enables a better fit 

compared to alternative distributions.  

The underlying growth process produces Pareto tails in the cross-section, while individual 

entities exhibit lognormal growth. This finding supports the assumption of lognormal growth between 

sparse price observations in studies of private equity fund pricing. The smooth double Pareto 

distribution’s accurate fit further narrows the bounds on the likely processes generating private equity 

returns. From a practical viewpoint, its capability to model the entire distribution of valuation 

multiples rather than being restricted to the tails facilitates incorporation into risk management 

frameworks. 

Tests using subsamples of venture capital and buyout funds suggest that the overall distribution 

of fund returns may be composed of several underlying distributions with distinct tail exponents and 

birth processes. Venture capital funds in particular show relatively small tail exponents corresponding 
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to infinite variance, which may be a deceptively appealing characteristic for investors. However, fat 

tails in the cross-section can be explained without having to invoke a fat-tailed growth process for 

individual entities. 

An established and growing literature on size distributions in various fields of research might 

benefit from the increased accuracy afforded by the smooth double Pareto distribution to processes in 

which initial size is not fixed. Further research may also aim to formally incorporate the dynamics of 

funds whose first technical observation is a cash pool with a valuation multiple of 1, which then jump 

to a more economically meaningful multiple when making or revaluing their first investment. 
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